Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes.

نویسنده

  • Harry W Green
چکیده

Deep earthquakes have been a paradox since their discovery in the 1920s. The combined increase of pressure and temperature with depth precludes brittle failure or frictional sliding beyond a few tens of kilometers, yet earthquakes occur continually in subduction zones to approximately 700 km. The expected healing effects of pressure and temperature and growing amounts of seismic and experimental data suggest that earthquakes at depth probably represent self-organized failure analogous to, but different from, brittle failure. The only high-pressure shearing instabilities identified by experiment require generation in situ of a small fraction of very weak material differing significantly in density from the parent material. This "fluid" spontaneously forms mode I microcracks or microanticracks that self-organize via the elastic strain fields at their tips, leading to shear failure. Growing evidence suggests that the great majority of subduction zone earthquakes shallower than 400 km are initiated by breakdown of hydrous phases and that deeper ones probably initiate as a shearing instability associated with breakdown of metastable olivine to its higher-pressure polymorphs. In either case, fault propagation could be enhanced by shear heating, just as is sometimes the case with frictional sliding in the crust. Extensive seismological interrogation of the region of the Tonga subduction zone in the southwest Pacific Ocean provides evidence suggesting significant metastable olivine, with implication for its presence in other regions of deep seismicity. If metastable olivine is confirmed, either current thermal models of subducting slabs are too warm or published kinetics of olivine breakdown reactions are too fast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subduction zone rheology

Rheological flow laws can be obtained from studies using multi-anvil high-pressure systems with synchrotron-based piezometers and strain metrics. The high flux X-ray source provides minute-scale time resolution with accurate measurement of diffraction patterns and direct sample images. Measurements of length changes with an accuracy of one part in 104 are being developed and will provide a new ...

متن کامل

Rigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer

The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations.  It can be seen t...

متن کامل

The Parker-Shearing instability in azimuthaly magnetized discs

We describe the effects of both magnetic buoyancy and differential rotation on a disc of isothermal gas embedded in a purely azimuthal magnetic field, in order to study the evolution and interplay of Parker and shearing instabilities. We perform a linear analysis of the evolution of perturbations in the shearing sheet model. Both instabilities occur on the slow MHD branch of the dispersion rela...

متن کامل

Influence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media

The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 22  شماره 

صفحات  -

تاریخ انتشار 2007